https://www.youtube.com/watch?v=Ulk4hw7pUZY
from video comments —
Reverse this and you get electrical power generation from moving water. Before having his head blown off at high-noon, JFK had recently visited a test facility for doing just this in Canada. Nearly nobody ever talks or writes of it. Shhhh.
—
Look into halbach array magnet configurations. You can double the field strength inside your thruster by arranging the magnets so that the field is contained entirely within the thruster and the external field is cancelled out.
—
Try using Pulse Width Modulation (PWM) with a Pulse Repetition Frequency (PRF), it may save on the overall wattage. You may also try and use some low amp high voltage supply. This will allow the water once it’s moving to help keep the water flowing even when the voltage is off. Kinda like once you get a tire rolling it doesn’t take as much force to keep it going. You may also consider using Idler Plates, they are used in Hydro Gas Generators to keep the water charged while using less electricity. Hope that helps give you some more things to consider and test with. Best Wishes & Blessings. Keith Noneya
—
Good work, particularly the parametric testing. The reason the electrode spacing didn’t matter was that you did not account for the return path of the magnetic field. The result is a counter magnetic field on the outer fringes closest to the plates creating turbulence and drag. You can see this at timestamp 4:28 on the upper plate on the right. It is even present during the 3cm test at timestamp 4:42. Wider spacing needs a wider magnetic field, at least as wide as the plates are. The second thing is that if you use a magnetic core, such as steel, laminated iron, or ferrite, to complete the return path, your magnetic field in the chamber will be higher still, leading to higher chamber medium velocity. PM me if you need more details. 🙂
—
The force on water is =B*I*L where B is the magnetic flux density, I is the current in the water( between the electrodes), L is the spacing between the electrodes(i.e length of the conducting path), Also current (I=V/R) is voltage(V) by resistance and here the resistance(R) is clearly proportional to the electrode spacing L making R=k*L where k is a proportionality constant. Long story short the force B*I*L becomes B*(V/(k*L))*L that is B*V/k i.e it is independent of the electrode spacing and linear wrt B and V. This should be fine for intuition, but the resistance is also non linear which only complicates things I must also add this, there are two currents now here, one going between the electrodes (I) and the other being the thrust flow itself(i) if you use the same rule for this new current(i) a new force arises opposing the main current (I, between the electrodes), this new force is B*i*c where B again is the magnetic field, i is the flow of water causing thrust and c now is the overall length of the electrode. The direction of this force is ixB that is the cross product of the velocity of charge flow and B(I know it’s cXB but that’s hard to imagine) and it is opposite to the main current I between the electrodes. This is the back emf in this system where the faster your thrust flow the lesser the current between the electrodes which inturn reduces the thrust force. To put all this mathematically, the thrust force which we saw as F=B*V/k should be replaced by F=B*(V-a*f)/k where ‘a’ is back emf constant, f is the thrust flow rate showing that flow rate will counter itself.