US Military ‘air optical fiber’ (using femto-second pulsed sound waves) Increases Power of Laser Weapons



Allows for much better transmission of lasers through free space.




Researchers in the US, funded by the US Air Force, Defense Threat Reduction Agency (DTRA), and the National Science Foundation, have managed to turn air into an “optical fiber.” This breakthrough allows the scientists to create an air waveguide, allowing for much better transmission of lasers through free space — much in the same way that glass and plastic waveguides allow for efficient transmission of laser light over long stretches of optical fiber. As you might have guessed from the US military’s involvement, this could be big news for laser weapons — but there are repercussions for laser-based communications and scientific research as well.

As we covered in our featured story, The Science of Beam Weapons, lasers really suck at traveling through air. Lasers are fine over short distances at low intensities (e.g. laser pointers), but to increase their effective range or destructive power you really have to dial up the power — and, rather annoyingly, strong lasers have so much energy that they ionize the air that they travel through, creating nasty air (blooming) that quickly causes the laser to lose coherence and fizzle. As a result, any powerful laser that might be used for long-range communications — or bisecting a battalion of enemy soldiers on the battlefield — self-destructs after just a few meters of traveling through air. This is why, for the most part, lasers are almost exclusively used in conjunction with a waveguide — such as optical fiber — that keeps the beam coherent over a long distance.

Now, however, Howard Milchberg and some graduate students at the University of Maryland have created an air waveguide, allowing them to beam powerful lasers much farther through open space before they fizzle. The science is fairly complex, but essentially the waveguide is produced by a series of femtosecond laser pulses. The rapid heating caused by the laser pulses generates a ring of tiny sound waves that converge on a center point, creating a high-pressure channel in the middle surrounded by a low-pressure region.

Leave a Comment

Your email address will not be published. Required fields are marked *